Tag Archives: clean environment

Alliance Environmental Group Receives the 2015 ThermaPure® Best Practices Performance Award


David Hedman, CEO of ThermaPure, Inc., announced the company’s first “Best Practices” Award to Alliance Environmental Group, Inc. The annual award was developed to recognize the ThermaPure licensee that best exemplifies the combination of performance and quality in delivering the ThermaPureHeat process.

“The application of elevated temperatures to a structure is a complex process and only the well trained are able to perform this successfully,” stated Hedman. “Alliance has repeatedly demonstrated this ability through their project success, training and quality control programs, and certainly management. We are extremely proud to recognize Alliance and their outstanding performance.”

In the past three years Alliance has steadily increased the number of ThermaPure projects and will complete well over 2000 ThermaPureHeat projects in 2015. What is significant about this performance is that in each of these three years, Alliance has decreased the number of heat related damages. To date in 2015 the cost of damages has been less than .5% of heat revenues.This is an impressive number and a reflection of an outstanding team effort.


Alliance uses the ThermaPure technology in Pest Control for bed bugs and termites and for Environmental projects including the management of biological contaminants such as bacteria, viruses, and mold. Alliance recently had significant success using the technology for odors, including smoke. They have done restorative drying on water loss projects, particularly those involving contamination where structural pasteurization is effective.

Joe McLean, CEO of Alliance Environmental Group says “ThermaPure technology has been a great addition in the Alliance portfolio of services.  It has helped us reach clients and successfully serve them using a revolutionary new method.”

Alliance Environmental Group’s mission is to be the leading environmental services company by delivering innovative, customer-driven solutions to our clients and partners. We continuously strive to set the industry standard by providing safe, efficient, high-quality services; relying on our quality of service, industry expertise, and honest communication; consistently providing a safe environment; and adapting existing services as needed to keep up with our rapidly changing communities.

ThermaPure is delighted with Alliance’s success with the ThermaPureHeat process. Alliance is making a major, green contribution, with this technology. As they perform thousands of ThermaPure projects, they are replacing tons of toxic pesticide chemicals which protects the health of our communities and ecosystems.

A Realtor’s View of ThermaPure

We are very pleased with this short article that mentioned us in the Ventura County Star Sunday entitled, “Don’t Get Bit by the Termite Tent.” Thank you for writing this Brian Guevara! Here is what he had to say: 


Nothing is as frustrating to a homebuyer as the wait to move into the home they have just purchased because of a “termite tent.”

Ventura County real estate agent Brian Guevara has found away to move the process along: ThermaPure Heat Method.

Guevara has become a proponent of the system that kills termites and other bugs with heat rather than chemicals.

“I like it because it’s faster,” said Guevara, a RE/MAX agent with the Ventura office. “It costs about the same, and it doesn’t leave behind any chemical residue.”

In the ThermaPureHeat method, the extermination company skips the tent. Instead, it brings a number of heaters into the home and heats the interior of the home up to 150 degrees. (Lipsticks, candles and other items that might melt are safely placed in the refrigerator.) The heat kills termites and other small insects. It also takes care of any mold and pathogens.

After the interior of the home is heated for several hours, the home is cooled with fans.

The entire process takes about 12 hours. Tenting the home and treating it with chemicals will keep the homeowner out of the home for several days.

“I like it because the homeowner is anxious.

They want to move in. This lets that happen much sooner,” said Guevara. “The costs are comparable. And there is no chemical residue in the house. The guarantee is comparable to the traditional methods so the customer has nothing to lose.”

ThermePureHeat is a method developed and patented by Ventura County businessman David Hedman. The ThermaPureHeat method heats the ambient air inside structures up to 150 degrees for several hours in order to eliminate termites and other bugs, as well as mold, mites, allergens and other airborne pathogens. In water damage restoration, the method sanitizes the structure while it dries.

Brian Guevara is apracticing real estate professionalwithRE/MAXGold Coast Realtors.

He has been serving Ventura County for over 30 years and is a member of the Hall of Fame for RE/MAX International. He can be reached at 933-6600.

ThermaPureHeat® – A Restoration Process for Flooded Structures

flood damage

1000-Year Flood Events – Commonplace Occurrences?

This year’s storm experience in South Carolina is the sixth 1000-year flood in the past five years according to a USA Today report. What had seemed extraordinary is becoming common. These seemingly perpetual storms across the U.S. cause a multitude of problems.  One significant result is the presence of biological pathogens (such as bacteria, fungi, viruses, and protozoa) found in structures damaged by floodwaters. Structural pasteurization to dry and sanitize may be the best restoration process available.

Structural Pasteurization of Flooded Buildings

A process for a safe and effective sanitization of structures impacted by floodwaters is needed.  Pasteurization, a process used successfully for 150 years in food products, can be applied similarly to structures for disinfection. IICRC documents recognize “Structural Pasteurization”, but do not fully express the benefits. By reaching temperatures lethal to many of the pathogens associated with floodwater contamination, ThermaPureHeat® “pasteurizes” structures. ThermaPureHeat® is the most effective application of structural pasteurization.

Buildings impacted by floodwater are Category 3 water losses. Category 3 is defined by the IICRC as “grossly unsanitary”.  Structural pasteurization as a part of the drying process can return the structure to pre-loss conditions. Structural pasteurization with ThermaPureHeat® is one of the most thorough restoration processes because of both efficacy toward the target pathogens and the ability to penetrate inaccessible areas.  This process does not use chemicals or biocides and therefore no additional hazards are added to the space.  It is unique as a restoration process because it thoroughly dries the structure and kills the unwanted pathogens and their insect vectors.

Floodwaters Present a Severe Hazard

In the current aftermath conditions from these most recent storms, the extensive flooding will create a significant environmental health concern.  The potential contaminants in floodwaters include a variety of biological pathogens.  These pathogens present the opportunity for a number of water and excreta-related health problems and diseases for a significant period of time.  Many of these pathogens can remain viable in a structure for up to a year.  Some can remain longer in a moist environment.  As structures dry, many become aerosolized and migrate throughout the building.  Rodents and insects also act as vectors transporting these pathogens throughout a structure.  Disinfection of flooded structures is a complex and demanding problem.

Floodwaters present non-biological contamination problems as well.  Gasoline, pesticides and other chemicals may be carried by water into structures.  The volatile organic compounds (VOCs) associated with many of these chemicals present a potential hazard to occupants as they slowly off-gas over the next several months. Structural pasteurization can speed up the process of off-gassing by increasing the vapor pressure of the impacted material. Chemical vapors are typically exhausted, but under certain conditions must be captured through carbon filtration.

Pathogens Found in Floodwater

Typical assessment of pathogens found in floodwater focuses on the measurement of coliform bacteria. The presence of coliform bacteria is used as a yardstick for the assumption of biological contaminants in structures impacted by floods or other sewage contaminated water.  Although this assessment is generally adequate to determine the presence of sewage related biological pathogens, it may not be adequate to determine the appropriate remedial response for the structure.  Some floodwater pathogens may be more difficult to kill or reduce to safe levels.

Recent studies of E. coli contaminations indicate that there is a possibility of human infection up to ten months after the original contamination.[i]  Other species may have even greater durability.  Salmonella, for example, has a longer life outside of the host and therefore has the potential of infecting a larger number of species, including flies, cockroaches and other vectors.  This may be true of other microbes as well.  It is important to understand that floodwater contaminated structures can remain a health concern for a long period of time.  This is particularly true if the building is not properly dried and remains moist or wet.  In fact, the conditions will worsen for a period of time. In addition, most buildings are a catalyst for insect infestation.

The bulk of data used in this paper regarding pathogens in floodwater is found in studies provided to assist in the management or design of water supply and sanitation systems.[ii]  Because of the size and magnitude of some of the hurricane floodplains the contaminated water and attendant pathogens are most likely comparable to sewage contamination.  Efficacy studies regarding the thermal death rate of floodwater pathogens are derived from these sources.

Pathogens found in buildings affected by sewage-impacted floodwaters include bacteria, viruses, protozoa, and helminthes.  According to the World Health Organization (WHO) these pathogens impact human health.  Although it is not the purpose of this paper to understand specific health concerns associated with these pathogens, it is the intent to understand the resolution – structural disinfection of floodwater contaminated buildings.  Included in these categories are a few of the assumed water and excreta-related pathogens.

Bacteria Viruses Protozoa Helminths
Escherichia coli


Enterococcus faecium


Enteric viruses


Giardia lamblia

Entamoeba hystolitica

Nematodes – roundworms,

hookworms, Ascaris

Cestodes – tapeworms

The potential for infection of occupants in a structure comes from various vectors.  The vectors found to transport or transmit these pathogens in buildings include[iii]: feco-oral, water-washed, water-based, excreta-based insect and rodent vectors, and aerosol.

The importance of this is to demonstrate the dynamic nature of a floodwater-contaminated building.  Occupants can be affected by a wide variety of routes and vectors making the resolution more complex.  ThermaPureHeat® is the only process that effectively treats all of the pathogens present as well as impacting the vectors and routes, while drying the structure.

Thermal Inactivity of Specific Floodwater Pathogens

Temperature is a more thorough intervention process in the inactivation of enteric pathogens.  According to the WHO, “…heating to pasteurization temperatures (generally 60C) for periods of minutes to tens of minutes will destroy most waterborne pathogens of concern”[iv].  This general statement may be adequate to recommend utilization of heat for the disinfection of floodwater-impacted structures.  However, for the purpose of this paper, more specific targets have been identified to further define the efficacy of the process.  The following table shows specific pathogens that can be rendered inactive by temperatures within the range of structural pasteurization:


Genus, Species


Death Rate



Escherichia coli Bacteria 60C/140F 45 minutes Padhye & Doyle[v]
Enterococcus faecium Bacteria 60C/140F <45 minutes Spelina[vi]
Salmonella Bacteria 60C/140F I hour Feachem[1][vii]
Shigella Bacteria 55C/131F 1 hour Feachem[viii]
Giardia lamblia Protozoa 60C/140F 2-3 minutes Univ of Utah[ix]
Entamoeba hisolytica Protozoa 60C/140F 1 minute Feachem[x]
Rotovirus Virus 63C/145F 30 minutes G.N. Woode[xi]
Enteroviruses Virus 60C/140F 2 hours Feachem[xii]
Ascaris lumbricoides Helminths 55C/131F 1 hour Feachem[xiii]

Application of the ThermaPureHeat® Technology

The efficacy of ThermaPureHeat® in its simplest form is a result of the combination of temperature and duration.  The complexity of any thermal sanitization is achieving efficacy in all areas of the structure.  What differentiates ThermaPureHeat® is the ability to sanitize the entire structure, including inaccessible areas and difficult areas such as crawlspaces.

Buildings are complex and the requirement for uniform temperature throughout a structure is necessary to achieve efficacy.  Heat technicians are thoroughly trained in construction materials, thermal dynamics and the intended targets.  Buildings have materials that conduct heat, some that create radiant losses, and others that are heat sinks.  The heat technician must understand each of these conditions and others.  Temperatures are monitored in real-time in all areas including difficult to heat locations.  In a wooden structure these places might be under sill plates, between header boards, and in wall cavities.  Crawlspaces and sub-areas provide additional difficulties.  ThermaPureHeat® can treat all structures.  Additionally, this process typically includes laboratory testing to document the reduction of bacteria following treatment.

The process of pasteurization of a structure appears to uniformly impact these pathogens related to floodwaters.  Other methods of disinfection are not as uniform in result.  For example, Giardia cysts are resistant to chlorination and a wide range of pH.[xiv]  Other methods may not be ovacidal, for example with some helminths, such as Ascaris, the eggs are more resistant than the larvae.  Other processes are not as safe or not as effective, or both.  Heat, as a disinfectant, is uniform and non-discriminatory in application.  Pasteurization of a building is an effective process to reduce pathogens to safe levels.

Structural Pasteurization with ThermaPureHeat

All buildings affected by floodwaters should be sanitized.  The most thorough method is structural pasteurization with ThermaPureHeat®. It is a patented, non-chemical, engineered process that “pasteurizes” structures.  This process is the most effective because it is the only process that kills or inactivates the majority of pathogens present while thoroughly drying the structure.  Additionally, it is the only treatment that inactivates pathogens in inaccessible areas. It prevents pathogens from vectoring by other sources.  Vector sources include aerosol, rodents, cockroaches, and other insects.  Added value for the process is the reduction of VOCs that may have resulted from chemical contamination associated with the floodwaters.  Much like the pasteurization of food products, ThermaPureHeat® reduces the biological contaminants in a structure to levels safe for occupants.

Larry D. Chase, Consultant to ThermaPure, Inc.

Original article reviewed by Sean P. Abbott, Ph.D., E-Therm Inc., Scientific Advisory Board

October 2015

[i] Varma, J.K., et al, (2003). “An outbreak of Escherichia coli infection following exposure to a contaminated building”. Journal of American Medical Association, 290(20), 2709-2712.

[ii] Feachem, R. et al,(1983). Sanitation and Disease Health Aspects of Excreta and Wastewater Management. Wiley, Dorchester, England.

[iii] Mara, D.D., Feachem, R.G.A., (1999) “Waterborne and Excreta-Related Disease: Unitary Environmental Classification”, Journal of Environmental Engineering-ASCE, 125 (4), 334-339.

[iv] Sobsey, M., (2002) “Managing water in the home, accelerated health basis of improved water supply”, World Health Organization.

[v] Padhye, N.V. and Doyle, M.P. 1992. “Escherichia coli 0157:H7: Epidemiology, pathogenesis, and methods for detection in foods”. J. Food Protect. 55(7):555-565.

[vi] Spelina, et al, (2007). “Thermal Inactivation of Enterococcus faecium, National Institute of Public Health, Prague, Czech Republic.

[vii] Feachem, R. et al, (1983) Sanitation and Disease Health Aspects of Excreta and Wastewater Management, Wiley, Dorchester, England, p278.

[viii]  Feachem, R. et al, (1983) Sanitation and Disease Health Aspects of Excreta and Wastewater Management, Wiley, Dorchester, England, p294.

[ix] Wilderness Medicine, (2005) University of Utah, School of Medicine.

[x] Feachem, R. et al, (1983) Sanitation and Disease Health Aspects of Excreta and Wastewater Management, Wiley, Dorchester, England, p342.

[xi] Feachem, R. et al, (1983) Sanitation and Disease Health Aspects of Excreta and Wastewater Management, Wiley, Dorchester, England, p188.

[xii] Feachem, et al, (1983)

[xiii] Feachem, et al, (1983).

[xiv] Feachem, et al, (1982) p354.

The Safe Heating of Drywall

By David Hedman and Larry Chase

ThermaPure Building

In 1917, there were three major inventions brought to market that changed the way Americans would live in their homes forever. They were the invention of gypsum boards known as drywall, the light toggle switch that allowed you to flip one switch to turn lights off and on, and … marshmallow fluff.

While the marshmallow fluff might be delicious and the light switch is convenient, the invention of drywall changed the nature and simplicity of home and office construction, allowing for the easy partitioning of rooms and privacy for the occupants.

Most jobs in which the ThermaPureHeat method is used involve structures with drywall walls. The ThermaPureHeat method heats the ambient air inside structures up to 150 degrees for several hours in order to eliminate termites and other bugs, as well as mold, mites, allergens and other airborne pathogens. In water damage restoration, the method sanitizes the structure while it dries.

Many studies conducted during recent years show that the heating does not harm the composition of drywall, which is the basic component of so many structures. Change is hard in many industries, especially when a disruptive technology such as structural heating is used. As the ThermaPureHeat method has grown in popularity, many in the restoration industry have recycled old beliefs that high temperatures damage the gypsum in drywall. Extensive studies show that permanent temperature damage to gypsum occurs only when temperatures exceed 176°F. Temperatures fluctuating between 140°F and 176°F will experience dehydrating, but the studies indicate they will be restored to ambient levels, and the quality of the drywall will not be degraded.

The following are quotes and references from scientific studies on the relationship of ThermaPure-type temperature ranges (generally, 105°F to 150°F) and gypsum board:

  • “Calcination is a chemical and physical change in the nature of common GWB produced by heating to temperatures in excess of 80°C (176°F).” (Kennedy 2003)
  • “Gypsum board, depending on ambient air humidity, either gains or loses free water when continuously exposed to 140°F, and may be stable to occasional short exposures at much higher temperatures.” (Meyer 1982)
  • “The mass loss remains almost unchanged up to 100°C (212°F). Between 100°C (212°F) and 160°C (320°F), the mass loss of the different boards decreases between 15 percent and 17 percent as moisture is driven off. These results are reasonable as gypsum with no additives contains about 21 percent by mass of water.” (Benichou 2001)
  • “In a separate experiment, paperless wall board was exposed approximately four hours to a cool/sooty fire as a ‘ceiling’; the maximum temperature of the exposed surface was approximately 66°C (150°F). Hemp, polyurethane foam and asphalt paper were used as the fuel to produce the smoke … No dehydration of the wallboard occurred in this exposure.” (Mann 2009)

The warranties of several drywall manufacturers also bear out the evidence that the ThermaPureHeat method does not damage sheetrock. The warranty sheets warn against “continuous exposure” to high temperatures or high humidity.

The verbiage in the warranties implies some discretion. The warranties use language such as “exposed to sustained temperatures,” “for extended periods” and “prolonged exposure.” Elevated ThermaPure temperatures are typically used for only several hours and likely would not qualify as extended periods or prolonged exposure.

Some may believe that you cannot use air temperatures over 104°F to 125°F when drying gypsum. This would not only be impossible, but the impact on many industries, not just restoration, would be significant. Gypsum board will exceed both of these temperatures in many normally occurring situations. For example, here are a few instances where these temperatures are exceeded:

  • Transportation – Trailers, rail cars and pods in transit will exceed these temperatures. A 2001 study by the International Safe Transit Association measured trailer temperatures in excess of 140°F.
  • Storage – Many outdoor storage areas in the south or southwest will exceed 104°F during summer months as outdoor air temperatures exceed this regularly. Storage in facilities without air conditioning commonly exceeds these temperatures. Roof temperatures in a simulated structure in Madison, Wisconsin reached 168°F in a study by the USDA Forest Products Laboratory, resulting in a space temperature over 120°F (Winandy 1995).
  • Installation – During summer months in the southwest, drywall is installed before the air conditioning or ceiling insulation. This is normal building practice, and drywall temperatures regularly exceed 120°F in this scenario. Phoenix experienced 33 days in 2011 of outside temperatures in excess of 110°F.
  • After installation – Drywall installed in garages or other unconditioned areas will far exceed 104°F. In some areas, such as Arizona, outside temperatures will exceed 110°F for lengthy periods of time and can reach extreme temperatures over 150°F in unconditioned spaces. It is common in some southwest states not to have insulation in garage ceilings (with no livable space built over), leaving this drywall directly exposed to the high attic temperatures. Temperatures in unconditioned attics may approach 200°F during summer months in the southwest.

A number of studies validate the idea that ThermaPureHeat does not damage sheetrock. For copies of these specific studies, contact Jared Perez at 800-375-7786 or jperez@thermapure.com.

In addition to the use of nine U.S. patents, the ThermaPure licensees receive extensive training on the safe heating of building materials. The training program uses a 300-page training manual and a test flood house for real-time experience.

This article was originally published in the February issue of C&R magazine and has been reprinted with permission from the Restoration Industry Association.

ThermaPure Brings the Ultimate Safe Harbor: Restoration Made Easier, More Effective

Restoration professionals explain how ThermaPure’s heat method benefits their companies.

C&R January 2015 ThermaPure

This article was originally published in the January issue of C&R magazine and has been reprinted with permission from the Restoration Industry Association.

Everyone has heard the theatrical maxim: The show must go on. But what if the actors, stagehands and musicians are ready, but the production office beneath the stage flooded 36 hours before the scheduled show?

That’s what happened at a stage show in Orange County, California, in April 2013. Operators managed to dry the production office completely, kill the mycobacterial residue and eliminate odor prior to the show, thanks, in large part, to the ThermaPure Heat method.

The method has been growing in popularity in the restoration industry. Firms that previously used only the wire brush and scrape or replace methods now have another choice: ThermaPure Heat.  It essentially pasteurizes a space by heating the area to a lethal temperature, up to 150 degrees Fahrenheit. When the temperature reaches that point, the structure is dried and bugs and bacteria are killed.

“It’s great,” says Fred Ananian, owner of Coast Risk Management based in California. “This gives me a tool in the bag for restoration work that I never had before.” The heat method reduces the time spent in restorative processes by half and often reduces the cost by well more than that. Ananian faced a job in an engineering firm’s office space that was flooded on a Tuesday. He started the job Wednesday and finished clean-up on Saturday. “After that project, I got a call from the insurance adjuster who said, ‘Fred, you didn’t charge me enough because you saved me about $120,000 in reconstruction costs.’”

Bill Weber is one of the pioneers of mold remediation; he has been at it since 1998. “I was skeptical about this, but the result was good,” says the regional manager for the Anderson Group in Northern California and a leader at DKI, the largest restoration contracting organization in North America. Weber tells the story of a long-term roof leak into a one-bedroom apartment on the sixth floor of an apartment complex that had created a large water problem. “Typically I follow all the IICRC  standards: sanding, wire brushing and so on. In this case, Jared [Perez of ThermaPure] challenged me to do the gross removal and then heat it up. The process took one day for the heating and two days for the removal. We had a post- remediation verification, and it came up clean.”

Rich Wasvary has used ThermaPure Heat more than 1,500 times for his clients in the New York and New Jersey area. That region has been hit with hurricanes and storms that have changed the nature of the aquifers and landscape. These changes have caused thousands of homes and offices to flood.

“The difference with ThermaPure is that you are cleaning the actual structure, even in places that you cannot see,” he says.

He faced particular challenges after Superstorm Sandy hit the New Jersey coast in 2012. “There was a time demand on those jobs. The owners wanted to get the properties ready for rental in the next season.” If the company was forced to do major deconstruction and reconstruction, the properties would not be ready, and the owners would lose rental income. ThermaPure helped dry the structures and reduce the amount of construction time needed.

John Nelson, project manager for Alliance Environmental Group, Inc., says about 60 percent of his firm’s restoration work in California and Arizona relates to flooded crawl spaces. “We are talking about areas that have been completely saturated with water. Areas that have inches or feet of water in the crawl space. Our restoration clients extract the free water, and they have no efficient way to dry the crawl space. We are able to use elevated temperature for three or four days to dry the crawl space and dry the framing. We are able to increase the temp to kill any mycobacterial. Any sewage loss? We would kill that.”

Nelson says that the process has additional tangential benefits: It kills odor and small bugs. Traditionally, contractors use ozone or a fogging method to mask the odor.  “It didn’t reduce it – just got it to an acceptable level,” Nelson says. “But with this method, we are able to heat the area, and then use air movers to move air flow through the area and actually remove the cause of the odor.”

Ananian has been an early adapter of ThermaPure Heat, and it has created a reputation and a business advantage for him in the high-income area of Orange County where he operates, he says.

“We had a high-end  customer who had moisture trapped under the marble he had just laid. The marble was sitting on top of about a three-quarter-inch mud pack and the contractor had sealed the slab. No matter what they tried, they had floor efflorescence,” says Ananian. “We used ThermaPure to heat the area and dry out the moisture. Problem solved.” Another home had water damage and $200,000 worth of murals painted on the walls. Ananian’s team was able to dry the area without removing and destroying any of the murals.

John Martin, president and owner of Certified Disaster Cleaning and Mitigation based in Salinas, California, says homeowners and insurance companies are fans of the heat method because of what they don’t have to do.

“A typical case for us is a leak behind a dishwasher,” Martin says. Repairing the damage can be costly and difficult without using heat. “We would have to pull it out of there and, depending on the extent of the damage, rip out dry wall and cabinets and granite countertops. And you know that can run $10,000, $15,000 or $20,000,” he adds. Using ThermaPure Heat allows contractors to leave drywall intact, for the most part. “The homeowners are happy and the insurance companies are even happier,” he says.

ThermaPure Heat is being used in restoration projects such as:

◾   After-water damage in a residential structure, particularly in structures in which the crawl space has been flooded.

◾   Crime scene clean-up. One firm is using ThermaPure Heat to clean up the sites of homicides or former methamphetamine laboratories

◾  Disaster clean-up. One ThermaPure Heat licensee in New York relied on the method extensively after Superstorm Sandy.

◾   Removal of odors. Anything from a kitchen fire odor to a heavy stench of cigarette smoke can be taken care of.

◾   Floor efflorescence in a basement or under a finished floor.

◾   Leaks in confined spaces.

◾   Structural pasteurization and rodent removal/decontamination.

By Tim Gallagher and David Hedman

Can ThermaPure’s Heat Levels Damage Drywall/Gypsum?



Many clients and members of the industry have expressed concern about heating gypsum board, also called the plaster of Paris, a common building material.

What many people don’t realize is that these building materials are exposed to temperatures similar to a ThermaPureHeat treatment before they are used in construction. Often, materials are shipped through the deserts of Arizona and California, packed in trucks that are not temperature controlled. These temperatures may even exceed ThermaPure’s temperatures. Additionally, these temperatures are not monitored or distributed with the same expert care that ThermaPure technicians use.

Scientifically, gypsum board is used in buildings because of its unique and resilient properties. Gypsum board, like any other porous building material, will lose moisture through evaporation as the material is heated.  Heating to 100°C (212°F) will increase conductivity of the material, increase thermal expansion of the material, but the mass loss of the material is virtually unchanged.  As the gypsum board heats the energy is used in the gypsum to begin dehydration.  All of these minor physical events occur as the material begins to dehydrate.  This takes place up to the beginning of calcination at 100°C.  It does not appear that any damage is done when this activity takes place over a fairly rapid period of time, as is done in a ThermaPure process.  The significant changes to the material occur after calcination begins and most occur between 100°C and 200°C.

There are few studies that show what happens to a gypsum material that is heated up to 100°C (212°F) and then returned to ambient temps.  The sense is that the restoration to ambient temperatures will return the material to a normal state because no chemical change has taken place. Calcination is a process that occurs in gypsum board in which the level of both liquid and vapor moisture are dehydrated.  It appears this process begins at 80°C (176°F).  There are several citations in which the researchers talk about temperatures of 100°C (212°F) as the approximate temp that calcination begins.  Either of these temperatures are typically in excess of a ThermaPure process.  One of the research papers (Fuller) states that comprehensive strength of gypsum board actually increases up to 100°C.

With years of experience, and thousands of jobs completed successfully, ThermaPure is familiar with the complexity of heating structures. We have taken a simple concept, pasteurizing buildings, and applied it to modern homes and commercial buildings. Each job is analyzed individually for the best results.

ThermaPure in Cleaning & Restoration Magazine

What is the advantage of using ThermaPure? A new article in C&R magazine, a publication by the Restoration Industry Association (RIA), answers this question. Check out the article, entitled “Why Heat Over 105 Degrees F” in this months issue.

C&R ThermaPure Article 1 Cover

Mold Remediation Check List

Here is a great check list for mold removal. The list came from a ThermaPure member, Precision Environmental. Take a look. Checklist for Mold Removal


Checklist for Mold Removal

The Botany of Desire

Here at ThermaPure, we enthusiastically support authors who explore the wonders of nature. Michael Pollan’s The Botany of Desire: A Plant’s-Eye View of the World is one of those authors. One of the most memorable quotes from Pollan’s book is “For great many species today, ‘fitness’ means the ability to get along in a world in which humankind has become the most powerful evolutionary force.”

“For great many species today, ‘fitness’

We spend a lot of time thinking about being fit ourselves (or lack thereof), but do we spend that much time considering the wellbeing of other species? Pollan reminds us of the potential we have to influence the environment around us.

ThermaPure is a powerful Integrated Pest Management (IPM) tool and has replaced thousands of pounds of toxic chemicals through the use of a green technology, limiting the exposure of chemicals to both humans and the environments in which they live.